
C
on

qu
er

in
g

C
om

pl
ex

 a
nd

 C
ha

ng
in

g
Sy

st
em

s
O

bj
ec

t-
O

ri
en

te
d

So
ft

w
ar

e
E

ng
in

ee
ri

ng
Chapter 2,
Modeling with UML

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 2

Preliminaries (1)

Students from other departments than Informatik:
How do I get a Schein for this lecture?

Bachelor students:
Are there mandatory homeworks or a written exam in this
lecture?

♦ Optional homeworks, but no mandatory homeworks.

♦ Written exam on Feb 16

♦ Hörerschein: just ask (mailto:dutoit@in.tum.de).

♦ Vorlesung & Übung Schein: Feb 16, written exam.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 3

Preliminaries (2)

Praktikum registration:
http://www12.in.tum.de/projects/STARS2001/
before tonight 20:00

Hauptseminar Requirements Engineering

Thursdays 13:00-14:00

3 slots are still available

Book: “Object-Oriented Software Engineering: ...”
w Computerbücher am Obelisk
w Kanzler

w Lachner

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 4

Preliminaries (3)

Ground rules:

♦ If you stop understanding me for any reason (content,
language, sound system), let me know.

♦ Ask (many) questions
w During the lecture

w After the lecture
w During the Sprechstunde

w Via E-mail

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 5

Overview

♦ What is modeling?

♦ What is UML?

♦ Use case diagrams

♦ Class diagrams

♦ Sequence diagrams

♦ Activity diagrams

♦ Summary

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 6

Motivation

♦ Realistic and useful systems are large and complex.
w Unix System V: 1 mio SLOC (source lines of code)
w HiPath telephone switch: 8.5 mio SLOC

w Windows2000: 40 mio SLOC

♦ Systems require the work of many people (developers, testers,
managers, clients, users, etc.).

♦ Systems have an extended life cycle, hence they evolve.

♦ 1 mio SLOC with 100 persons ≠ 10 k SLOC with 1 person

-> Modeling

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 7

Systems, Models, and Views

♦ Model: Abstraction describing a system (or a subset)

♦ View: Selected aspects of a model

♦ Notation: Set of rules for representing views

♦ Views and models of a single system can overlap each other

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 8

Systems, Models, and Views

System
View 1

Model 2
View 2

View 3

Model 1

Aircraft

 Flightsimulator

Scale Model

Blueprints

Electrical
Wiring

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 9

Models, Views, and Systems (UML)

View
**

depicted bydescribed by

System Model

flightSimulator:ModelscaleModel:Model

blueprints:View

airplane:System

fuelSystem:View electricalWiring:View

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 10

Concepts and Phenomena

♦ Phenomenon: An object in the world of a domain as you
perceive it, for example:
w The lecture you are attending

w My blue watch

♦ Concept: Describes the properties of phenomena that are
common, for example:
w Lectures on software engineering
w Blue watches

♦ A concept is a 3-tuple:
w Name: distinguishes it from other concepts.
w Purpose: properties that determine if a phenomenon is a member

w Members: phenomena which are part of the concept.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 11

♦ Abstraction: Classification of phenomena into concepts

♦ Modeling: Development of abstractions to answer specific
questions about a set of phenomena while ignoring irrelevant
details.

MembersName

Clock

Purpose

A device that
measures time.

Concepts and Phenomena

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 12

Concepts In Software: Type and Instance

♦ Type:
w An abstraction in the context of programming languages
w Name: int, Purpose: integral number, Members: 0, -1, 1, 2,
-2, . . .

♦ Instance:
w Member of a specific type

♦ The type of a variable represents all possible instances the
variable can take.

♦ The relationship between “type” and “instance” is similar to
that of “concept” and “phenomenon.”

♦ Abstract data type:
w Special type whose implementation is hidden from the rest of the

system.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 13

Class

♦ Class:
w An abstraction in the context of object-oriented languages

♦ Like an abstract data type, a class encapsulates both state
(variables) and behavior (methods)

♦ Unlike abstract data types, classes can be defined in terms of
other classes using inheritance

Watch

time
date

CalculatorWatch
SetDate(d)

EnterCalcMode()
InputNumber(n)

calculatorState

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 14

Object-Oriented Modeling

UML Package

Application Domain Solution Domain
Application Domain Model System Model

Aircraft
TrafficController

FlightPlan Airport

MapDisplay

FlightPlanDatabase

SummaryDisplay

TrafficControl

TrafficControl

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 15

Application and Solution Domain

♦ Application Domain (Requirements Analysis):
w The environment in which the system is operating

♦ Solution Domain (System Design, Object Design):
w The available technologies to build the system

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 16

What is UML?

♦ UML (Unified Modeling Language)
w An emerging standard for modeling object-oriented software.
w Resulted from the convergence of notations from three leading

object-oriented methods:
t OMT (James Rumbaugh)

t OOSE (Ivar Jacobson)

t Booch (Grady Booch)

♦ Reference: “The Unified Modeling Language User Guide”,
Addison Wesley, 1999.

♦ Supported by several CASE tools
w Rational ROSE
w Together/J

w ...

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 17

UML and This Course

♦ You can model 80% of most problems by using about 20%
UML.

♦ In this course, we teach you those 20%.

♦ Today, we give you a brief overview.

♦ In subsequent lectures, we will introduce more concepts as
needed.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 18

UML First Pass

♦ Use case diagrams
w Describe the functional behavior of the system as seen by the user.

♦ Class diagrams
w Describe the static structure of the system: Objects, Attributes, and

Associations.

♦ Sequence diagrams
w Describe the dynamic behavior between actors and the system and

between objects of the system.

♦ Statechart diagrams
w Describe the dynamic behavior of an individual object as a finite state

machine.

♦ Activity diagrams
w Model the dynamic behavior of a system, in particular the workflow,

i.e. a flowchart.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 19

UML First Pass: Use Case Diagrams

WatchUser WatchRepairPerson

ReadTime

SetTime

ChangeBattery

Actor

Use case

Package
SimpleWatch

Use case diagrams represent the functionality of the system
from user’s point of view

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 20

UML First Pass: Class Diagrams

Battery
load()

1

2

Time
now()

PushButton
state
push()
release()

1

1

1

1

1

2

blinkIdx
blinkSeconds()
blinkMinutes()
blinkHours()
stopBlinking()
referesh()

LCDDisplay

SimpleWatch

Class

AssociationMultiplicity

Attributes

Operations

Class diagrams represent the structure of the system

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 21

UML First Pass: Sequence Diagram

Object

Message
Activation

Sequence diagrams represent the behavior as interactions

blinkHours()

blinkMinutes()

incrementMinutes()

refresh()

commitNewTime()

stopBlinking()

pressButton1()

pressButton2()

pressButtons1And2()

pressButton1()

:WatchUser
:Time:LCDDisplay:SimpleWatch

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 22

button1&2Pressed

button1&2Pressed

button1Pressed

button2Pressed

button2Pressed

button2Pressed

button1Pressed

button1&2Pressed Increment
Minutes

Increment
Hours

Blink
Hours

Blink
Seconds

Blink
Minutes

Increment
Seconds

Stop
Blinking

UML First Pass: Statechart Diagrams

StateInitial state

Final state

Transition

Event

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 23

Other UML Notations

UML provide other notations that we will be introduced in
subsequent lectures, as needed.

♦ Implementation diagrams
w Component diagrams

w Deployment diagrams
w Introduced in lecture on System Design

♦ Object Constraint Language (OCL)
w Introduced in lecture on Object Design

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 24

UML Core Conventions

♦ Rectangles are classes or instances

♦ Ovals are functions or use cases

♦ Instances are denoted with an underlined names
w myWatch:SimpleWatch

w joe:Firefighter

♦ Types are denoted with nonunderlined names
w SimpleWatch

w Firefighter

♦ Diagrams are graphs
w Nodes are entities
w Arcs are relationships between entities

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 25

UML Second Pass: Use Case Diagrams

Used during requirements elicitation to
represent external behavior

♦ Actors represent roles, that is, a type
of user of the system

♦ Use cases represent a sequence of
interaction for a type of functionality

♦ The use case model is the set of all
use cases. It is a complete description
of the functionality of the system and
its environment

Passenger

PurchaseTicket

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 26

Actors

♦ An actor models an external entity which
communicates with the system:
w User

w External system
w Physical environment

♦ An actor has a unique name and an optional
description.

♦ Examples:
w Passenger: A person in the train

w GPS satellite: Provides the system with GPS
coordinates

Passenger

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 27

Use Case

A use case represents a class of
functionality provided by the system as
an event flow.

A use case consists of:

♦ Unique name

♦ Participating actors

♦ Entry conditions

♦ Flow of events

♦ Exit conditions

♦ Special requirements

PurchaseTicket

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 28

Use Case Example

Name: Purchase ticket

Participating actor: Passenger

Entry condition:

♦ Passenger standing in front
of ticket distributor.

♦ Passenger has sufficient
money to purchase ticket.

Exit condition:

♦ Passenger has ticket.

Event flow:

1. Passenger selects the number
of zones to be traveled.

2. Distributor displays the amount
due.

3. Passenger inserts money, of
at least the amount due.

4. Distributor returns change.

5. Distributor issues ticket.

Anything missing?

Exceptional cases!

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 29

The <<extend>> Relationship

♦ <<extend>> relationships represent
exceptional or seldom invoked cases.

♦ The exceptional event flows are
factored out of the main event flow
for clarity.

♦ Use cases representing exceptional
flows can extend more than one use
case.

♦ The direction of a <<extend>>
relationship is to the extended use
case

Passenger

PurchaseTicket

TimeOut

<<extend>>

NoChange

<<extend>>OutOfOrder

<<extend>>

Cancel

<<extend>>

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 30

Passenger

PurchaseSingleTicket

PurchaseMultiCard

NoChange

<<extend>>

Cancel

<<extend>>

<<include>>

CollectMoney

<<include>>

The <<include>> Relationship

♦ An <<include>>
relationship represents
behavior that is factored out
of the use case.

♦ An <<include>> represents
behavior that is factored out
for reuse, not because it is an
exception.

♦ The direction of a
<<include>> relationship is
to the using use case (unlike
<<extend>> relationships).

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 31

Class Diagrams

♦ Class diagrams represent the structure of the system.

♦ Class diagrams are used
w during requirements analysis to model problem domain concepts

w during system design to model subsystems and interfaces
w during object design to model classes.

Enumeration getZones()
Price getPrice(Zone)

TariffSchedule

* *

Trip
zone:Zone
price:Price

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 32

Classes

♦ A class represent a concept.
♦ A class encapsulates state (attributes) and behavior

(operations).
♦ Each attribute has a type.
♦ Each operation has a signature.
♦ The class name is the only mandatory information.

zone2price
getZones()
getPrice()

TariffSchedule

Table zone2price
Enumeration getZones()
Price getPrice(Zone)

TariffSchedule

Name

Attributes

Operations

Signature

TariffSchedule

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 33

Instances

♦ An instance represents a phenomenon.

♦ The name of an instance is underlined and can contain the class
of the instance.

♦ The attributes are represented with their values.

zone2price = {
{‘1’, .20},
{‘2’, .40},
{‘3’, .60}}

tariff_1974:TarifSchedule

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 34

Actor vs. Instances

♦ What is the difference between an actor and a class and an
instance?

♦ Actor:
w An entity outside the system to be modeled, interacting with the

system (“Pilot”)

♦ Class:
w An abstraction modeling an entity in the problem domain, inside

the system to be modeled (“Cockpit”)

♦ Object:
w A specific instance of a class (“Joe, the inspector”).

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 35

Associations

♦ Associations denote relationships between classes.

♦ The multiplicity of an association end denotes how many
objects the source object can legitimately reference.

Enumeration getZones()
Price getPrice(Zone)

TarifSchedule

* price
zone

TripLeg

*

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 36

1-to-1 and 1-to-Many Associations

1-to-1 association

1-to-many association

*

draw()

Polygon

x:Integer
y:Integer

Point1

Has-capital

name:String

Country

name:String

City
11

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 37

Aggregation

♦ An aggregation is a special case of association denoting a
“consists of” hierarchy.

♦ The aggregate is the parent class, the components are the
children class.

1

Exhaust System

Muffler Tailpipe

0..2

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 38

Composition

♦ A solid diamond denote composition, a strong form of
aggregation where components cannot exist without the
aggregate.

3

TicketMachine

ZoneButton

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 39

Generalization

♦ Generalization relationships denote inheritance between
classes.

♦ The children classes inherit the attributes and operations of the
parent class.

♦ Generalization simplifies the model by eliminating redundancy.

Button

ZoneButtonCancelButton

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 40

From Problem Statement to Code

Problem Statement
A stock exchange lists many companies. Each company is
identified by a ticker symbol

Class Diagram

Java Code
public class StockExchange {
 public Vector m_Company = new Vector();
};
public class Company {
 public int m_tickerSymbol;
 public Vector m_StockExchange = new Vector();
};

*StockExchange

tickerSymbol

Company*
lists

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 41

UML Sequence Diagrams

♦ Used during requirements analysis
w To refine use case descriptions

w to find additional objects
(“participating objects”)

♦ Used during system design
w to refine subsystem interfaces

♦ Classes are represented by
columns

♦ Messages are represented by
arrows

♦ Activations are represented by
narrow rectangles

♦ Lifelines are represented by
dashed lines

selectZone()

pickupChange()

pickUpTicket()

insertCoins()

Passenger
TicketMachine

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 42

UML Sequence Diagrams: Nested Messages

♦ The source of an arrow indicates the activation which sent the
message

♦ An activation is as long as all nested activations

selectZone()

Passenger
ZoneButton TarifSchedule Display

lookupPrice(selection)

displayPrice(price)

price

Dataflow

…to be continued...

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 43

Sequence Diagram Observations

♦ UML sequence diagram represent behavior in terms of
interactions.

♦ Complement the class diagrams which represent structure.

♦ Useful to find participating objects.

♦ Time consuming to build but worth the investment.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 44

Activity Diagrams

♦ An activity diagram shows flow control within a system

♦ An activity diagram is a special case of a state chart diagram in
which states are activities (“functions”)

♦ Two types of states:
w Action state:

t Cannot be decomposed any further

t Happens “instantaneously” with respect to the level of abstraction
used in the model

w Activity state:
t Can be decomposed further

t The activity is modeled by another activity diagram

Handle
Incident

Document
Incident

Archive
Incident

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 45

Activity Diagram: Modeling Decisions

Open
Incident

Notify
Police Chief

Notify
Fire Chief

Allocate
Resources

[fire & highPriority]

[not fire & highPriority]

[lowPriority]

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 46

Activity Diagrams: Modeling Concurrency

♦ Synchronization of multiple activities

♦ Splitting the flow of control into multiple threads

SynchronizationSplitting

Archive
Incident

Open
Incident

Document
Incident

Allocate
Resources

Coordinate
Resources

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 47

Activity Diagrams: Swimlanes

♦ Actions may be grouped into swimlanes to denote the object or
subsystem that implements the actions.

Archive
Incident

Dispatcher

FieldOfficer

Open
Incident

Document
Incident

Allocate
Resources

Coordinate
Resources

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 48

Summary

♦ UML provides a wide variety of notations for representing
many aspects of software development
w Powerful, but complex language

w Can be misused to generate unreadable models
w Can be misunderstood when using too many exotic features

♦ We concentrate only on a few notations:
w Functional model: use case diagram
w Object model: class diagram

w Dynamic model: sequence diagrams, statechart and activity
diagrams

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 49

Next steps

♦ UML modeling tool: Together/J tutorial in November

♦ UML concepts will be revisited in subsequent lectures.
w Requirements lectures: Use case diagrams & Class diagrams
w System design lectures: Deployment diagrams

w Object design lectures: More class diagrams
w ...

♦ Stay tuned for the Requirements Elicitation lecture

